
Software Engineering

and Architecture

HotStone GUI using MiniDraw

Finally, we may play a game!

The Framework Iteration

• Learning Objectives:

– Frameworks:

• Use MiniDraw HotSpots to build a GUI for HotStone

– Tailoring Tools (interaction), Model (domain coupling), and View (Gfx)

• See MiniDraw as example of a framework

• See a lot of patterns in action

– “TDD” as process with visual (non-automated) testing

• TDD is a process:

– Keep focus, take small steps, follow the rhythm

• … and we will develop our GUI in that manner

• … but have to rely on visual/manual testing

– Unfortunately, no automated testing

CS@AU Henrik Bærbak Christensen 2

What will the Product be?

• A ‘hotseat’

UI for two

players on

a single

computer

• Swap seat

in front

of the UI

CS@AU Henrik Bærbak Christensen 3

Demo!

Analysis

• GUI elements are obvious, but… never-the-less:

• Favor object composition

– Core = Domain = HotStone

• Card, Hero, Player, Game

– Edge = GUI = MiniDraw Gfx

• Figure, Tool, Drawing, View

• Graphical elements

representing Game elements

– Card CardFigure

– Hero HeroFigure

– Etc.

CS@AU Henrik Bærbak Christensen 4

Analysis

• Thus crafting/growing a GUI …

– (using MiniDraw or LibGdx or Unity or UnrealEngine or …)

• … entails …

– Drawing graphical elements representing domain elements

– Translating user actions on these Gfx elements into domain

mutator calls

• Drag CardFigure from hand up on the field playCard(…)

• Etc

– Translating domain state changes into Gfx updates

• onHeroUpdate() HeroFigure gfx update with new health

CS@AU Henrik Bærbak Christensen 5

Analysis

• In our Iteration 8 mandatory this entails…

– Drawing Gfx

• MiniDraw Figure HotSpot. Provided by me!

– Translating user actions to mutator calls

• MiniDraw Tool HotSpot. Initial work provided, fill in!

– FRS §37.7.4

– Translating game state changes into Gfx updates

• Observer on Game. Solved in Iteration 7

• MiniDraw Drawing HotSpot. Initial work provided, fill in!

– FRS §37.7.3

CS@AU Henrik Bærbak Christensen 6

§37.7.1 User Stories

• Read FRS §37.7.1 or play the game for requirements…

CS@AU Henrik Bærbak Christensen 7

Software Architecture Views

A short detour

CS@AU Henrik Bærbak Christensen 8

Views in Architecture

• In the software architecture field it is acknowledged that

any architecture can be viewed from at least three

perspectives:

– The runtime perspective / functional view

• What objects are present at runtime – how do they interact – what is

the protocol?

– Sequence diagrams and dynamics

– The compile-time perspective / module view

• What packages, interfaces, classes are there?

– Class and package diagrams

– The allocation/deployment view

• What machines are there? What programs are running on them

CS@AU Henrik Bærbak Christensen 9

The Runtime View

Coupling Domain and GUI together

GUI  Domain

• What does this entail?

• Information flow analysis

1. Translating movement of Figures into game mutations

2. Translating game state changes into 2D Gfx updates

• Alas a rough Test List with two headlines

– 1. From GUI to Domain

– 2. From Domain to GUI

CS@AU Henrik Bærbak Christensen 11

By Example (1)

• As example:

– I drag ‘Uno’ from

hand to field using the

mouse

– Translates to

• game.playCard(…);

• From GUI to Domain

CS@AU Henrik Bærbak Christensen 12

By Example (2)

• … Which …

– … makes Game fire a

onPlayCard() event

– … caught by MiniDraw

which deletes

CardFigure and

adds a MinionFigure

• From Domain to GUI

CS@AU Henrik Bærbak Christensen 13

Or as UML

CS@AU Henrik Bærbak Christensen 14

Patterns Involved

CS@AU Henrik Bærbak Christensen 15

Facade
Observer

GUI  Domain  GUI

Internal MiniDraw redrawing

MVC:Controller (Tool) MVC:ViewMVC:Model

Divide and Conquer

• Exercise is split into two – one for each direction…

CS@AU Henrik Bærbak Christensen 16

Exercise: Why do it in this order?

Domain to GUI

First Task

Domain to GUI

• Translating game state changes into Gfx updates
• Observer on Game. Solved in Iteration 7

• MiniDraw Drawing HotSpot. Initial work provided, fill in!

– FRS §37.7.3

• What do we have?

– The GameObserver – emitting state change events

• Ex.: a card is drawn to hand

• What should then happen?

– Card appearing

• I.e. ‘f = new CardFigure(…); add(f);’

in the Drawing role of MiniDraw

CS@AU Henrik Bærbak Christensen 18

Domain to GUI

• Solution:

– Make a special purpose Drawing that receives events from the

Game – Serving the Drawing role and the GameObserver role

– And A) couple that to the game and B) inject into MiniDraw

CS@AU Henrik Bærbak Christensen 19

Domain to GUI

• Thus, reacting upon onCardDraw() is then just executing

the corresponding graphical manipulations

– onCardDraw() is part of the exercise, but another examples is:

– onCardPlay() is implemented in provided code

• Remove CardFigure

• Add MinionFigure

• Layout battle field

CS@AU Henrik Bærbak Christensen 20

Compositional Drawing

• Implementing Drawing may be tedios though

• Why – because all methods must be implemented anew

– The collection of figures, the FigureEvent system, the …

• Favor object composition

– Reuse smaller, highly specialized, objects

– Thus it is done in 3 lines of code + delegation methods

CS@AU Henrik Bærbak Christensen 21

GUI to Domain

Second Task

GUI to Domain

• The four actions

• Exercise

– Given a user clicks somewhere, what determines which of the

above four actions is the wanted action?

CS@AU Henrik Bærbak Christensen 23

GUI to Domain

• Analysis

– Whatever the ‘mouse down’ event ‘hits’ on the GUI determines

what the user wants

• The (x,y) is on top of a figure

– A card

– A minion

– A hero

– A button

CS@AU Henrik Bærbak Christensen 24

1

2

3

4

Selecting What To Do

• Thus

– On mouseDown() we determine which action is relevant

– All further mouse events must be processed accordingly

• mouseUp() does different things

• Change behavior according to which state system is in

– Ring a bell?

• Exercise: What Design Pattern is Involved?

CS@AU Henrik Bærbak Christensen 25

A HotSeatStateTool

• Favor Composition, avoid The Blob

– A state tool that delegates to sub tools

CS@AU Henrik Bærbak Christensen 26

Development Process

How to implement this in

a small steps way?

The Issue

• If we…

– Implement GUI to Domain code first – there is no visual feedback

• As there are no ‘Domain to GUI’ code in place to update Gfx 

– Implement the Domain to GUI code first – then nothing happens

• As there is no way to force any state changes 

– (no game mutator calls)

• Solution: Need something to break the dependency

• FakeObject: Replacement object that is a lightweight

implementation of near-realistic behavior

CS@AU Henrik Bærbak Christensen 28

Domain To GUI

• We start in this end…

• … and must fake the state

changes on game

– Some other means of calling

• game.playCard(…)

• game.attackHero(…)

– … than using the UI itself

• We do it using a ‘FakeObject’ tool, constructed just for

this particular development task (ala a Junit test case)
CS@AU Henrik Bærbak Christensen 29

Scaffolding

• Scaffolding:

• Scaffolding code:

– Code to help us build the production

code, not part of the production

itself

• A manual ‘JUnit’ pendant…

CS@AU Henrik Bærbak Christensen 30

Scaffolding Tool

CS@AU Henrik Bærbak Christensen 31

Demo

• Click First time

– = first test case

CS@AU Henrik Bærbak Christensen 32

Why Does This Work?

CS@AU Henrik Bærbak Christensen 33

I am sure it was called

Demo

• Click Second time

– = second test case

CS@AU Henrik Bærbak Christensen 34

… and see the right
thing happen visually

And so on…

The Point

• ShowUpdate program is a visual test program

– To Test Drive the full HotStoneDrawing implementation

– To add test cases, put tests into the TriggerGameUpdate tool

– Add case 5, 6, … until all mutators in game can be called and the

Gfx is updated correctly!

CS@AU Henrik Bærbak Christensen 35

Alas the Rhythm

CS@AU Henrik Bærbak Christensen 36

Test Double or Not?

• You can do this using Test Doubles

– A FakeObjectGame that mimic a real game but with

stubbed/canned behavior

– Experience: It becomes almost like developing AlphaStone all

over again…

• Laborious and even ripe for coding errors in the FakeObject 

• You can do this using a simple HotStone variant

– Like e.g. AlphaStone

– Argument: At this point our AlphaStone should be pretty ‘… code

that works’ without defects and thus may serve as basis for

incrementally developing our GUI

CS@AU Henrik Bærbak Christensen 37

But (1)…

• There are some trap if you change to, say, AlphaStone

• First:

– AlphaStone Hero has tree mana

– And cards (Tres, Dos, Uno)

• Thus – is this ‘test sequence’

valid?

– Answer: No

• Argue why?

• Morale: Change the sequence!

CS@AU Henrik Bærbak Christensen 38

But (2)…

• Some visual tests require Peddersen to do stuff

– We cannot test ‘attackCard()’s visual behavior unless Peddersen

has some minions on the field, right?

• Easy (?)

– Just call endTurn()… Ups?!?

• How do get rid of that state of the UI???

CS@AU Henrik Bærbak Christensen 39

But (2) …

• Our TriggerUpdateTool must therefore handle this…

• The trick is:

– Force the UI state change directly from our scaffolding code…

CS@AU Henrik Bærbak Christensen 40

But (2) Alternative…

• An alternative route is to use HotStoneDrawing in its

‘opponent mode’

– Which is designed for remote play

• The UI is always tied to one specific player

– Here it is Findus.

– Now a ‘case n:’ state can:

• endTurn(); (do some Peddersen mutator calls); endTurn();

• Remember – you must end in a state where Findus is in turn!

CS@AU Henrik Bærbak Christensen 41

Mandatory: Domain to GUI

• The first MiniDraw related exercise on Iteration 8

CS@AU Henrik Bærbak Christensen 42

GUI to Domain

GUI to Domain

• ShowTools is a visual test program

• Process

– Pick a ‘user action’ = tool to implement

– Develop Xtool (+ extend HotSeatStateTool) for that until OK

– Loop until all four user actions are done…

CS@AU Henrik Bærbak Christensen 44

Mandatory: GUI to Domain

• That is

• Again, use a real game implementation rather than my

FakeObject game

– Exercise: Why do the provided code use a FakeObject Game?

CS@AU Henrik Bærbak Christensen 45

System Testing

Play the Game.

Finally!

CS@AU Henrik Bærbak Christensen 46

System Testing

• And – Ta daa!

• Play any of the variants…

CS@AU Henrik Bærbak Christensen 47

Two SubSystems

=

Two set of Terms/Objects

Domain and GUI Terms

• Domain / Game speaks in terms of Card, Hero, Player

– To represent the roles of a card, a hero, …

• GUI / MiniDraw speaks in terms of CardFigure,

HeroFigure, …

– To represent the roles of a card, a hero

• We need to translate between one and the other when

the two subsystems interact…

CS@AU Henrik Bærbak Christensen 49

Coupling Domain and Gfx

• The Observer onX() calls “speaks in domain terms”

• But these have to be translated into MiniDraw Gfx

equivalents: A card is drawn as a CardFigure…

– Solution: Drawing keeps a mapping between the two

CS@AU Henrik Bærbak Christensen 50

Coupling Domain and Gfx

• In

• A simple does the trick

CS@AU Henrik Bærbak Christensen 51

Coupling Domain and Gfx

• Which allows us to handle onCardUpdate(), simply by

looking up that card

CS@AU Henrik Bærbak Christensen 52

And The Other Way

• We need the link the other way as well

– The Figure needs access to its associated Card/minion

CS@AU Henrik Bærbak Christensen 53

Liability of a Mapping

• The big downside of a mapping !

– Your code has to ensure they do not get out of sync!

• Looking up a Figure which is not there 

• Solution is

– Uncle Bob: One Level Of Abstraction

• Never manipulate map directly, use private methods

– And lots of testing!

CS@AU Henrik Bærbak Christensen 54

Module View

Organization of interfaces/classes

CS@AU Henrik Bærbak Christensen 55

The Provided Code…

• Provided Zip adds a lot of new code to your HotStone

– Merge carefully, temporary stubs for StandardGame, may

overwrite all your work!

– Do it on a branch!!! Make a backup

• New UI specific packages

CS@AU Henrik Bærbak Christensen 56

Package Contents

• Core

– MiniDraw ‘Drawing’ and ‘View’ roles

• Partially implemented for you

• Figure

– MiniDraw ‘Figure’s

• Message

– Aux roles

• Tool

– MiniDraw ‘Tool’ roles

• Partially provided for you

• GfxConstants All layout stored there
CS@AU Henrik Bærbak Christensen 57

GfxConstants

• Controlling (most) graphical layouts

– The Peter Bøgh projectors are 1600x900 pixels so I have to

adjust the

• SCREEN_HEIGHT_PIXEL

• Play around to find the

most pleasing size on

your machine…

• (No viewpoint in MiniDraw,

sorry…)

CS@AU Henrik Bærbak Christensen 58

Happy Coding…

