/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

HotStone GUI using MiniDraw
Finally, we may play a game!

/v The Framework lteration

AARHUS UNIVERSITET

« Learning Objectives:

— Frameworks:

* Use MiniDraw HotSpots to build a GUI for HotStone
— Tailoring Tools (interaction), Model (domain coupling), and View (Gfx)

« See MiniDraw as example of a framework
« See a lot of patterns in action

— “TDD” as process with visual (non-automated) testing

« TDD is a process:
— Keep focus, take small steps, follow the rhythm
... and we will develop our GUI in that manner

... but have to rely on visual/manual testing
— Unfortunately, no automated testing

/v

AARHUS UNIVERSITET

* A‘hotseat’
Ul for two
players on
a single
computer

« Swap seat
In front
of the Ul

Demo!

CS@AU

What W|II theProduct. be

Fmdus Hand (3), Deck (16)
Add 2 attack to minion.

Turn ends (8). Next is PEDDERSEN
PEDDERSEN draws a card.

PEDDERSEN plays Shrimp-Cocktail.

... with effect: Taunt

Play card from hand. Result =0K

Henrik Baerbak Christensen 3

/v Analysis

AARHUS UNIVERSITET
« GUI elements are obvious, but... never-the-less:

« Favor object composition .

— Core = Domain = HotStone
» Card, Hero, Player, Game

— Edge = GUI = MiniDraw Gfx
« Figure, Tool, Drawing, View
« Graphical elements
representing Game elements
— Card {wy CardFigure
— Hero ¢y HeroFigure
— Etc.

(3). ck (16)

p-Cocktail.

CS@AU Henrik Baerbak Christensen 4

/v

AARHUS UNIVERSITET
« Thus crafting/growing a GUI ...

— (using MiniDraw or LibGdx or Unity or UnrealEngine or ...)
e ...entails ...

— Drawing graphical elements representing domain elements

— Translating user actions on these Gfx elements into domain
mutator calls

» Drag CardFigure from hand up on the field) playCard(...)
« Etc

— Translating domain state changes into Gfx updates
* onHeroUpdate() . HeroFigure gfx update with new health

Analysis

/v Analysis

AARHUS UNIVERSITET
* |In our Iteration 8 mandatory this entails...
— Drawing Gfx N\
* MiniDraw Figure HotSpot. Provided by me! === ===

— Translating user actions to mutator calls

* MiniDraw Tool HotSpot. Initial work provided, fill in!
— FRS §37.7.4

— Translating game state changes into Gfx updates

* Observer on Game. Solved in lteration 7
* MiniDraw Drawing HotSpot. Initial work provided, fill in!
— FRS §37.7.3

CS@AU Henrik Baerbak Christensen 6

/v §37.7.1 User Stories

AARHUS UNIVERSITET

« Read FRS §37.7.1 or play the game for requirements...

1. Dragging a card from the lower left "hand’ to the field results in a call to play-

Card().

2. Dragging a minion from a players field onto an opponent hero or minion results
in a call to attackHero() or attackCard() respectively.

3. Clicking on your own hero results in a call to usePower().

4. Clicking the upper right ‘end turn’ icon results in a call to endTurn().

Any state change in the game must of course also be reflected correctly in the appear-
ance of the graphical interface:

1. Cards/minions always have the proper mana cost, attack, and health shown
grapically (the latter two in the yellow attack and red blood icons).

2. Hero mana and health are shown on the hero figures in the respective icons.
Power description is shown in yellow, while opponent statistics are shown in
white (count of cards in hand and in deck, for the opponent player).

3. Inactive minion/hero is shown by a green Z.

4. Events/notifications from the game observer are shown in a list of blue message
boxes (like the 'FINDUS draws a card.” in the figure) which are removed after
a five second delay.

CS@AU Henrik Baerbak Christensen

O & hotstone.littleworld.dk:5220/landingpage24.}

(5] | Weekplan for SWEA 2024 X HotStone Game Server X |+ ~ =

« c O 8 nhotstonellittleworld.dk:5220/landingpage24.ht B ¥ 2 g @ H =

HotStone Game Server (E24 Beta Release)
Welcome to the SWEA HotStone game server, which allows you to play a game of HotStone with a friend.

Getting and Starting the Game Client

To play a game, you and your friend both need a game client. As we are in the Java world, the game client is
packed in a Java JAR file. Download it by clicking hotstoneclient.jar and store it on your desktop or some
suitable place. You of course only need to do that once {or everytime | fix a bug in it 3)

/v

AARHUS UNIVERSITET

Software Architecture Views

A short detour

CS@AU Henrik Baerbak Christensen

eV Views in Architecture

AARHUS UNIVERSITET

 In the software architecture field it is acknowledged that
any architecture can be viewed from at least three
perspectives:

— The runtime perspective / functional view

« What objects are present at runtime — how do they interact — what is
the protocol?

— Sequence diagrams and dynamics
— The compile-time perspective / module view

« What packages, interfaces, classes are there?
— Class and package diagrams

CS@AU Henrik Baerbak Christensen 9

/v

AARHUS UNIVERSITET

The Runtime View

Coupling Domain and GUI together

/v GUI & Domain

AARHUS UNIVERSITET
. . Observer 1: Observer State: State
() Wh at d OeS th I S e nta I I ? MVC: View State: Context MVC: Controller
«interface» " . «interface» . «interface»
ingVi i i current Tool
b
«interface» v
Game

* Information flow analysis
1. Translating movement of Figures into game mutations Gﬁ
2. Translating game state changes into 2D Gfx updates l_>

« Alas a rough Test List with two headlines
— 1. From GUI to Domain
— 2. From Domain to GUI

ot By Example (1)
AARHUS UNIVERSITET B
» As example: =N

— Il drag ‘Uno’ from
hand to field using the
mouse

— Translates to
« game.playCard(...);

* From GUI to Domain

L2
nly for personal use: Card graphics is Copyright of Blizzard Entertainment.

CS@AU Henrik Baerbak Christensen 12

/v By Example (2)

AARHUS UNIVERSITET
* ... Which ...

— ... makes Game fire a
onPlayCard() event

— ... caught by MiniDraw
which deletes
CardFigure and
adds a MinionFigure

e From Domain to GUI

; % i
y =
i
t ¢
i 5
= i

Cepsilon E" <
Peddersen: Hand (3), Deck (4)

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

Or as UML

‘PlayCardTool

HotStoneDrawing:

Drawing, GameObserver

‘FigureCollection

mouseDown

g

(]

mouseDrag

mousellp

® -l playCard

onPlayCard

- remove(cardFigure)

Normal MiniDra
figure Change
behaviour which
updates the Ul

add(minionFigure)

ﬁgurgc hanged
-

figureChanged

’[>

Figure 37.4: Example protocnl between HotStone and MiniDraw.

CS@AU

Henrik Baerbak Christensen

14

/v

Patterns Involved

Mormal MiniDra

AARHUS UNIVERSITET
MVC:Controller (Tool) MVC:Model MVC:View
‘PlayCardTool ‘Game Dra:?r:??g:rnn:ea{;”tiggwer ‘FigureCollection
mouseDown
®
mouseDrag Facade

@ -
mousellp
— layCard
o P
N

M —

Observer

onPlayCard

GUI

CS@AU

k

figure Change
behaviour which
updates the Ul

—

Domain

add(minionFigure)

T ﬁgurgC hanged
h—

figureChanged

L

L

Internal MiniDraw redrawing

Henrik Baerbak Christensen

— GUI

15

/v Divide and Conquer

AARHUS UNIVERSITET
« Exercise is split into two — one for each direction...

37.7.3 From Domain to GUI S

«interface» - «interface» «interface»
ﬁ DrawingView DrawingEditor |~ cyrren t Tool
«interface» ;
1 manipulate
«interface» " «interface»
awi igure
MVC: Model MVC: Model

Game
Observer 1: Subject Observer 2: Subject

37.7.4 From GUI to Domain
—d

Exercise: Why do it in this order?

CS@AU Henrik Baerbak Christensen 16

/v

AARHUS UNIVERSITET

Domain to GUI

First Task

eV Domain to GUI

AARHUS UNIVERSITET
« Translating game state changes into Gfx updates
* Observer on Game. Solved in Iteration 7
* MiniDraw Drawing HotSpot. Initial work provided, fill in!
— FRS §37.7.3

« What do we have?

— The GameObserver — emitting state change events
° EX_: a Card iS drawn tO hand vold onCardDraw(Player who, Card drawnCard);

« What should then happen? ——

MVC: Controller

— Card appearing

« l.e. ‘f=new CardFigure(...); add(f); I

CS@AU

eV Domain to GUI

AARHUS UNIVERSITET

o Solution:

— Make a special purpose Drawing that receives events from the
Game — Serving the Drawing role and the GameObserver role

public class HotStoneDrawing lmplements Drawing, GameObserver { ... }

public wvoid onCardDraw (Player who, Card drawnCard) {
[create a figure with proper image for card,
and position it correctly on the screen]

}
— And A) couple that to the game and B) inject into MiniDraw

pUbliC DPaWing createDrawing[DrawingEditor Editop} { public HotStoneDrawing(DrawingEditor editor, Game game,
theHotStoneDrawing = new HotStoneDrawing(editor, game, operatingPlayer, wiType); Player operatingPlayer,

. HotStoneDrawingType viType) {
return theHotStoneDrawing; aTyp yp

F

game . addObserver(this);

CS@AU Henrik Baerbak Christensen 19

eV Domain to GUI

AARHUS UNIVERSITET

* Thus, reacting upon onCardDraw() is then just executing
the corresponding graphical manipulations
— onCardDraw() is part of the exercise, but another examples is:
— onCardPlay() is implemented in provided code

public wvoid anlavCan(Plaver who, Card card, int atIndex) {
addMessage("" + who + " plays " + card.getName() + ".");

Add another message if the card has an effect

 Remove CardFigure
- Add MinionFigure ~N

» Layout battle fieldti

removeActorAndUpdateMapping(card);
createActorAndUpdateMapping(card, HotStoneFigureType.MINION_FIGURE);

refreshField(who);

opponentSummary . setText (computeHeroSummary (
Player.computeOpponent(playerShown)));
F

CS@AU Henrik Baerbak Christensen 20

/v Compositional Drawing

AARHUS UNIVERSITET
* Implementing Drawing may be tedios though

public class HotStoneDrawing implements|Drawing, | GameObserver { ... }

 Why — because all methods must be implemented anew
— The collection of figures, the FigureEvent system, the ...

 Favor object composition
— Reuse smaller, highly specialized, objects
— Thus it is done in 3 lines of code + delegation methods

public Figure add(Figure figure) { return figureCollection.add(figure); }

listenerHandler = new StandardDrawingChangelistenerHandler(); public void figureTnvalidated(FigurechangeEvent e) {
listenerHandler.fireDrawingInvalidated(source: this, e.getInvalidatedRectangle());
figureChangelistener = 3
-
new ForwardingFigureChangeHandler(socurce: this, listenerHandler);

figureCollection = new StandardFigureCollection(figureChangelistener);

CS@AU Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET

GUI to Domain

Second Task

/v GUI to Domain

AARHUS UNIVERSITET
 The four actions

1. Dragging a card from the lower left "hand’ to the field results in a call to play-
Card().

2. Dragging a minion from a players field onto an opponent hero or minion nesult5
in a call to attackHero() or attackCard() respectively.)

3. Clicking on your own hero results in a call to usePower().

4. Clicking the upper right "end turn’ icon results in a call to endTurn().

« EXercise

— Given a user clicks somewhere, what deterfﬁihés which of the
above four actions is the wanted action?

CS@AU Henrik Baerbak Christensen 23

/v GUI to Domain

AARHUS UNIVERSITET
* Analysis

— Whatever the ‘mouse down’ event hlts on the GUI determmes
what the user wants s

» The (x,y) is on top of a figure
— A card
— A minion
— A hero
— A button

1. Dragging a card from the lower left "hand’ to the field results in a call to play-
Card().

2 Dragglng a minion from a players field onto an opponent hero or minion results
in a call to afttackHero() or attackCard() respectively.

3. Clicking on your own hero results in a call to usePower().

4. Clicking the upper right "end turn’ icon results in a call to end Turn().

CS@AU Henrik Baerbak Christensen 24

/v Selecting What To Do

AARHUS UNIVERSITET
e Thus

— On mouseDown() we determine which action is relevant

— All further mouse events must be processed accordingly
* mouseUp() does different things

« Change behavior according to which state system is in
— Ring a bell?

« Exercise: What Design Pattern is Involved?

4

AARHUS UNIVERSITET

« Favor Composition, avoid The Blob
— A state tool that delegates to sub tools

public class HotSeatStateTocl extends NullTool ({

[..
priv
priv

@0ve
publ
o/ o/
Fi
Ve
v
o/ o/

-1

ate final Tool theNullTool =

ate Tool state;

rride

ic void mouseDown (MouseEvent e, int x,

Find 3

the figure below mouse (x,y)
gure figureAtPosition =

Iff that figure is a 1
(All MiniDraw figure a
implementing the HotSt

new NullTool ();

int y)

{

handle HotStone gra

igure role interface

if (figureAtPosition instanceof HotStoneFigure) {

}
st

HotStoneFigure hsf = (HotStoneFigure)
// TODO: Complete this state selection
if
state = new PlayCardTool (editor,
} else if (hsf.getType()
hsf.getType ()
state = new EndTurnTool (editor,
} else if
[...]

ate.mouseDown (e, x, ¥);

CS@AU

game,

)

A HotSeatStateTool

model. findFigure (e.getX (), e
sociated with our HotStone

11cs

(hsf.getType() == HotStoneFigureType.CARD_FIGURE)

a

{

.get¥());

re

figureAtPosition;

game.getPlayerInTurn());
== HotStoneFigureType.TURN_BUTTCN
== HotStoneFigureType.SWAP_BUTTON)
game) ;

@0verride

public void mouseUp (MouseEvent e, int x, int y) {
state.mouseUp(e, x, ¥y):
state = theNullTool;

}

@0Override

public void mouseDrag (MouseEvent e, int x, int y)
state.mouseDrag(e, X, V)i

}

@0verride

public void mouseMove (MouseEvent e, int x, int y)
state.mouseMove (e, X, V);

}

26

Henrik Baerbak Christensen

{

{

/v

AARHUS UNIVERSITET

Development Process

How to implement this in
a small steps way"?

eV The Issue

AARHUS UNIVERSITET

o |fwe...

— Implement GUI to Domain code first — there is no visual feedback
* As there are no ‘Domain to GUI’ code in place to update Gfx ®

— Implement the Domain to GUI code first — then nothing happens

» As there is no way to force any state changes ®
— (no game mutator calls)

« Solution: Need something to break the dependency

 FakeObject: Replacement object that is a lightweight
implementation of near-realistic behavior

VeV Domain To GUI

AARHUS UNIVERSITET
. N (Cliserar - Observer State: State

[We Sta rt I n th IS e n d MVC:View State : Context MVC: Controller

orawmavion | oramingEator [~ aran| Toa
> R
«interface»
Gﬂm E «mterfa::e» :

MVC: Model MVC: Model

[J I a n d m u St fa ke th e State Observer 1: Subject Observer 2: Subject

Observer 2: Observer

changes on game

— Some other means of calling
« game.playCard(...)
« game.attackHero(...)

— ... than using the Ul itself

 We do it using a ‘FakeObject’ tool, constructed just for
this particular development task (ala a Junit test case)

I~ Scaffolding

AARHUS UNIVERSITET
« Scaffolding:

Scaffolding, also called scaffold or staging.' is a temporary structure used to support a work crew and
materials to aid in the construction, maintenance and repair of buildings, bridges and all other human-made
structures. Scaffolds are widely used on site to get access to heights and areas that would be otherwise
hard to get to.[¥! Unsafe scaffolding has the potential to result in death or serious injury. Scaffolding is also

« Scaffolding code:

— Code to help us build the production
code, not part of the production
itself

* A manual ‘JUnit’ pendant...

CS@AU Henrik Baerbak Christensen 30

- Scaffolding Tool
AARHUS UNIVERSITET

public class ShowUpdate {
Henrik Baerbak @ coffeelake.small22 <hbc@cs.au.dk=
public static void main(String[] args) {

Game game = new FakeObjectGame();

DrawingEditor editor = @0verride
public void mouselUp(MouseEvent e, int x, int y) {

new MiniDrawApplication(ftitle: "Click anywhere to progress i giten (count) {

new HotStonmeFactory(game, Player.F case 0: {
editor.showStatus("Playing Findus Card # 8");

HutStnnEDFEWingTYpE-HEITSEA Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: 8);
editur.upen(]; game .playCard(Player.FINDUS, c);
break;
editor.setTool(|new TriggerGameUpdateTool(editor, game) |); }
1 case 1: {
editor.showStatus("Playing Findus Card # 1");
} Card c = game.getCardInHand(Player.FINDUS, indexinHand: @);
game .playCard(Player.FINDUS, c);
break;
1 usage Henrik Beerbak @ coffeelake.small22 <hbc@cs.au.dk> 3

case 2: {

class TriggerGamelUpdateTool extends NullTool {

editor.showStatus("Playing Findus Card # 2");
Card c = game.getCardInHand(Player.FINDUS, indexinHand: @);
game .playCard(Player.FINDUS, c);

break;

count++;

}
CS@AU Henrik Baerbak Christensen 31

\ 4
AARHUS UNIVERSITET

* Click First time

— = first test case

Demo

public void mouselUp(MouseEvent e, int x, int y) {

switch (count) {

case 8: {
editor.showStatus("Playing Findus Card # @");
Card c = game.getCardInHand(Player.FINDUS, indexinHand: @);
game .playCard(Player.FINDUS, c);
break;
1
case 1: {
editor.showStatus("Playing Findus Card # 1");
Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: @);
game.playCard(Player.FINDUS, c);
break;
T
case 2: {
editor.showStatus("Playing Findus Card # 2");
Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: @);
game.playCard(Player.FINDUS, c);
break; |F'Iaj,fing Findus Card # 0
T ; =

CS@AU

[B (R —— [T R R, 4 me

Henrik Baerbak Christensen 32

- Why Does This Work?

AARHUS UNIVERSITET

Game game = new FakeObjectGame(); | | am sure |t (WER) Ca”ed

FakeObjectGame:: playCard(FINDUS, Dos) called...
public Statws playCard(Player who, Card card) 4

System.out.println(" FakeObjectGame:: playCard(" + who + ", " + card.getName() + ") called...");
findusHand.remove(card);
findusField.add(card);

[observerHandler.notifyPlayCard(who, card);

public class HotStoneDrawing implements Drawing, GameObserver {
return Status.0K;

]- [public void onCardPlay(Player who, Card card) {

addMessage("" + who + " plays " + card.getName() + ".");

public void notifyPlayCard(Player who, Card card) { /4 TODO: Add another messoge if the cord haos on effect

observerList

.forEach(gameOb ver -4 g Ob ver.onCardPlay(who, card)) Iy

vhicrh or
viich are

by the indire the

lates are effected here: Remove the card figure

// and reploce it with a minion figure.
removeActorAndUpdateMapping(card);

createActorAndUpdateMapping(card, HotStoneFigureType.MINION_FIGURE);

refreshField(who);

opponentSummary.setText({computeHeroSummary(
Utility.computeOpponent(playerShown)));
b

CS@AU Henrik Baerbak Christensen 33

\ 4
AARHUS UNIVERSITET

 Click Second time
— = second test case

Game game = new FakeObjectGame(); l

@0verride
public void mouselUp(MouseEvent e, int x, int y) {
switch (count) {
case 8: {
editor.showStatus("Playing Findus Card # 8");
Card c = game.getCardInHand(Player.FINDUS, indexinHand: @);
game .playCard(Player.FINDUS, c);
break;
1

case 1: {
editor.showStatus("Playing Findus Card # 1");
Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: @);
game.playCard(Player.FINDUS, c);
break;
r
case 2: {

editor.showStatus("Playing Findus Card # 2");
Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: @);
game.playCard(Player.FINDUS, c);

break;

CS@AU Henrik Baerbak Christensen

Demo

... and see the right
thing happen visually

And so on...

34

eV The Point

AARHUS UNIVERSITET

« ShowUpdate program is a visual test program
— To Test Drive the full HotStoneDrawing implementation
— To add test cases, put tests into the TriggerGameUpdate tool

case 4: {

TODO: keep odding to this 'list' uvntil all game mutator calls
editor.showStatus("TODO: ADD SOME MORE game.doSomething() and develop UI behaviour");

break;

}

— Add case 5, 6, ... until all mutators in game can be called and the
Gfx is updated correctly!

FINDUS attacks Siete with Uno.

TODO: F US's ion Uno is killed.

TODQ: update card stats

CS@AU Henrik Baerbak Christensen 35

/v Alas the Rhythm

AARHUS UNIVERSITET

Thus the TDD rhythm becomes

1. Quickly add a test = add another "case n:" in the switch in the mouseup() method of the

TriggerGameChangeTool in ShowUpdate, which triggers a game update, that is still missing an
equivalent Gfx update.

2. Run it to see that nothing changes in the GUI.

3. Make a little change = review the TODO's in class HotStoneDrawing for the Observer pattern
callback methods, that needs to manipulate the MiniDraw figures, so the reflect the state change
made in Game.

4. Run it again and see that now the GUI actually updates according to the game state changes made.
5. Clean up

CS@AU Henrik Baerbak Christensen 36

/v Test Double or Not?

AARHUS UNIVERSITET

* You can do this using Test Doubles
— A FakeObjectGame that mimic a real game but with
stubbed/canned behavior
— Experience: It becomes almost like developing AlphaStone all

over again...
» Laborious and even ripe for coding errors in the FakeObject ®

* You can do this using a simple HotStone variant

— Like e.g. AlphaStone

— Argument: At this point our AlphaStone should be pretty ‘... code
that works’ without defects and thus may serve as basis for
incrementally developing our GUI

Game game = new FakeObjectGame();

/v But (1)...

AARHUS UNIVERSITET
« There are some trap if you change to, say, AlphaStone

* First:
— AlphaStone Hero has tree mana
— And Cards (Tres’ DOS’ UnO) ;‘)L‘Jl;)"LiC_';fl-)id mouseUp (MouseEvent e, int x, int y) {

switch (count) {
case 8: {
editor.showStatus("Playing Findus Card # 0@");
Card ¢ = game.getCardInHand(Player.FINDUS, indexinHand: @);
game .playCard(Player.FINDUS, c);
break;

 Thus —is this ‘test sequence’
Val id? — ca:zii;:showstatus("P'La\,ring Findus Card # 1");

d ¢ = game.getCardInHand(Player.FINDUS, indexinHand: a);

Car
_ Answer: NO zize.playCard(Player.FINDUS, c);

ak;
+

« Argue why? case 2: 1

editor.showStatus("Playing Findus Card # 2");

. ' Card c = game.getCardInHand(Player.FINDUS, indexinHand: @);
* orale. ange the sequence! gane . playCard(Player. FINDUS, ©;
break;

r

CS@AU Henrik Baerbak Christensen 38

/v But (2)...

AARHUS UNIVERSITET

« Some visual tests require Peddersen to do stuff

— We cannot test ‘attackCard()’s visual behavior unless Peddersen
has some minions on the field, right?

. Easy (?)
— Just call endTurn()... Ups?!?
* How do get rid of that state of the Ul???

Click anywhere to progress in an update sequence...

To PEDDERSEN

) FINDUS 0s
iple for Contro\\\\"% Turn er is PEDDERSEN
ons! :
.« not resP » ctale. das PEDDERSEN draws a card.
ame s © (gwitch plaver ° 4 must be treate

(€} sth
e U\ staté:

Thus this isa PU' such.-

Henrik Baerbak Christensen 39

/v

But (2) ...
AARHUS UNIVERSITET

* Qur TriggerUpdate Tool must therefore handle this...
 The trick is:

— Force the Ul state change directly from our scaffolding code...

case 2: {

editor.showStatus("Ending the turn for Findus")};
game.endTurn():
break;

]- T
case 3: { h"_"“'\—‘_

editor.showStatus("Hack to switch to Peddersen's screen...");

HotStoneDrawing hsd = (HotStoneDrawing) editor.drawing();
hsd.endHotSeat5tate();
break;

CS@AU

Henrik Baerbak Christensen

40

/v But (2) Alternative...

AARHUS UNIVERSITET

* An alternative route is to use HotStoneDrawing in its
‘opponent mode’

— Which is designed for remote play

« The Ul is always tied to one specific player
— Here it is Findus.

DrawingEditor editor =

new MiniDrawApplication(title: "Click anywhere to progress in an update sequence...",
new HotStoneE game, Player.FINDOST——mH0
Hntsmneurawingwpe.DPPGHENT_HGDED T“‘*—:,

— Now a ‘case n:’ state can:
* endTurn(); (do some Peddersen mutator calls); endTurn();
« Remember — you must end in a state where Findus is in turn!

CS@AU Henrik Baerbak Christensen 41

/v Mandatory: Domain to GUI

AARHUS UNIVERSITET
 The first MiniDraw related exercise on lteration 8

From Domain to GUI

This exercise is partially solved in the handed-out code base.

Complete the implementation of the provided but incomplete
HotstoneDrawing class such that all state changes in 2 Game are

observed and reflected in proper GUI updates.

Visual test class: showupdate, gradle target: update
public void onCardOraw(Player who, Card drawnCard) {
// If showing 'myself’' then add the card to the hand,
. . - . . // refresh the hand; otherwise just update the summary

In detail: the HotStonebrawing class is the MiniDraw Drawing role which also ot the emmenent blauer
implements Gameobserver. Thus find TODO markers in the code base, and if (who == playerShown) {

. \ \ // TODO: add card to hand, refresh the hand Gfx
update/extend the ShowUpdate with more visual test cases to 'fix all the } else {

// TODO: update opponent's summary

TODO's .

addMessage(who + " draws a card.");

}

CS@AU Henrik Baerbak Christensen 42

/v

AARHUS UNIVERSITET

GUI to Domain

/v GUI to Domain

AARHUS UNIVERSITET
« ShowTools is a visual test program

public class ShowToocls {
public static wvoid main(String[] args) {
// TODO: Probably replace with a real but simple HotStone variant

Game game = new FakeObjectGame ();

DrawingEditor editor =

new MiniDrawApplication("Test-Driven Dev of Toocls",
new HotStoneFactory (game, Player.FINDUS,
HotStoneDrawingType.HOTSEAT MODE));
editor.open();
editor.setTocl (new HotSeatStateTool (editor, game));
}
}

* Process
— Pick a ‘user action’ = tool to implement
— Develop Xtool (+ extend HotSeatStateTool) for that until OK
— Loop until all four user actions are done...

CS@AU Henrik Baerbak Christensen

44

/v Mandatory: GUI to Domain

AARHUS UNIVERSITET
e Thatis

From GUI to Domain
This exercise is partially solved in the handed-out code base.

Complete the implementation of the MiniDraw Tools such that all graphical
interactions are translated into the correct game mutator calls.

Visual test class: showTools (package: hotstone.gui2domain), gradle target: tools. Be sure to read the
details in FRS 37.7.4!

« Again, use a real game implementation rather than my
FakeObject game
— Exercise: Why do the provided code use a FakeObject Game?

CS@AU Henrik Baerbak Christensen 45

/v

AARHUS UNIVERSITET

CS@AU

System Testing

Play the Game.
Finally!

Henrik Baerbak Christensen

46

/v System Testing

AARHUS UNIVERSITET
 And - Ta daa!

SemiStone System Testing

Develop a complete GUI based SemiStone for system testing:
Combine your developed SemiStone variant from the previous

mandatory sprints with the solutions to this iteration's exercises.

Visual test class: Hotseatstone, gradle target: hotseat

* Play any of the variants...

CS@AU Henrik Baerbak Christensen

47

/v

AARHUS UNIVERSITET

Two SubSystems

Two set of Terms/Objects

/v

AARHUS UNIVERSITET

 Domain / Game speaks in terms of Card, Hero, Player
— To represent the roles of a card, a hero, ...

public interface Card extends Effectable, Identifiable, Categorizable {

Domain and GUI Terms

« GUI/ MiniDraw speaks in terms of CardFigure,
HeroFigure, ...

— To represent the roles of a card, a hero

public class CardFigure extends CompositeFigure
implements HotStoneFigure {

 We need to translate between one and the other when
the two subsystems interact...

CS@AU Henrik Baerbak Christensen 49

/v Coupling Domain and Gfx

AARHUS UNIVERSITET
« The Observer onX() calls “speaks in domain terms”

void onCardPlay(Player who, Card card);

void onAttackCard(Player playerAttacking, Card attackingtard[:tard defendingCard);]

void onUsePower(Player|whol;

« But these have to be translated into MiniDraw Gfx
equivalents: A card is drawn as a CardFigure...
— Solution: Drawing keeps a mapping between the two

CS@AU Henrik Baerbak Christensen 50

/v

AARHUS UNIVERSITET

Coupling Domain and Gfx

¢ In public class HotStoneDrawing implements Drawing, GameObserver

¢ A Slmple { private Map<Card, CardFigure> actorMap;]does the trICk

private wvoid kPeateAct0PAndUpdateHapping(Eard card, HotStoneFigureType type) { 32 usages
CardFigure actor =

new CardFigure(type, card, new Point(= @, v: 508)); ¥ill be laid out later

add(actor);

_> actorMap.put(card, actor);

zOrder(actor, ZOrder.TO_BOTTOM);

CS@AU Henrik Baerbak Christensen 51

Y o Coupling Domain and Gfx

AARHUS UNIVERSITET

« Which allows us to handle onCardUpdate(), simply by
looking up that card

public void onCardUpdate(Card card) {

— CardFigure actor = actorMap.get(card);

if (actor != null) {
TODO: vpdate the stats of the card/minion
addMessage("TODD: update card stats");
}
}

CS@AU Henrik Baerbak Christensen 52

/v And The Other Way

AARHUS UNIVERSITET

* We need the link the other way as well
— The Figure needs access to its associated Card/minion

public class CardFigure extends CompositeFigure Henrik Baerbal

implements HotStoneFigure {

private final Card associatedCard; 9 usage:

public void updateStats() {
writelock().lock(]);

-----------------'> try {
attackText.setText("" + associatedCard.getAttack());

healthText.setText("" + associatedCard.getHealth());

} finally {
writeLock() .unlock();
b
b

CS@AU Henrik Baerbak Christensen

53

/v Liability of a Mapping

AARHUS UNIVERSITET

« The big downside of a mapping !

— Your code has to ensure they do not get out of sync!
» Looking up a Figure which is not there ®

 Solution is

— Uncle Bob: One Level Of Abstraction
* Never manipulate map directly, use private methods

kemuvencturnndUpdateHapping{card};
createActorAndUpdateMapping(card, HotStoneFigureType.MINION_FIGURE);

private void removeActorAndUpdateMapping(Card card) {
remove(actorMap.get(card));

actorMap.remove(card);

}

— And lots of testing!

CS@AU Henrik Baerbak Christensen 54

/v

AARHUS UNIVERSITET

Module View

Organization of interfaces/classes

CS@AU Henrik Baerbak Christensen

55

/v The Provided Code...

AARHUS UNIVERSITET

* Provided Zip adds a lot of new code to your HotStone

— Merge carefully, temporary stubs for StandardGame, may
overwrite all your work! * ¥ hotstone-frameworicstar

.gradle
— Do it on a branch!!! Make a backup e

* New Ul specific packages T
?riﬁlifork
?bilgwer
standard

core
figure
message
tool

¢ GfxConstants

f -. view \

_ i package-info.java /
1 package-info.java
resources

test

CS@AU Henrik Baerbak Christensen

56

/v

AARHUS UNIVERSITET

Core

— MiniDraw ‘Drawing’ and ‘View’ roles
 Partially implemented for you

Figure

— MiniDraw ‘Figure’s

Message
— Aux roles

Tool

FINDUS attacks Siete with Uno.

TODO: FINDUS's minion Uno is killed.

TODQO: update card stats

— MiniDraw ‘Tool’ roles
 Partially provided for you

GfxConstants

CS@AU

All layout stored there

Henrik Baerbak Christensen

[=] view
[2] core
| © HotStoneDrawing |

(E) HotStoneDrawing Type
(©) HotStoneDrawingView
(© HotStoneFactory
T package-info.java
[=] figure
(©) ButtonFigure
(© cardFigure
(E) CardFigurePartType
(© HeroFigure
(1) HotStoneFigure
(E) HotStoneFigureType
T package-info.java
(© QuarterimageFigure
(© TextFigure
[E] message
[=] tool

(© EndTurnTool

(© HotSeatStateTool

F package-info.java
(© PlayCardTool
TGTRCONStants

F package-info.java

Package Contents

o7

/v GfxConstants

AARHUS UNIVERSITET

« Controlling (most) graphical layouts

— The Peter Bagh projectors are 1600x900 plxels so | have to
adjust the O orcemamsion < © showses © Sowteonsma © HorssstauToons

« SCREEN_HEIGHT_PIXEL o 3

public class GfxConstants {

« Play around to find the
most pleasing size on o e 0
your maChine L [E:miz Zt:tiz fi::'L i:t SCREEN_.ifEIGHT_PIXELSl 700; l

public static final Point MY_HERO_POSITION =
new Point(x: SCREEN_WIDTH_PIXELS - 200,
y: SCREEN_HEIGHT_PIXELS - 224);

public static final Point MY_HERO_POWER_DESCRIPTION_POSITION =
new Point(x: SCREEN_WIDTH_PIXELS - 360

d (N O VieWpOi nt i n M i n i D raW y .SCREEN,HEIGHL;IXELS - 3@);'
) public static final Point OPPONENT_HERO_POSITION = new Point(x: 8, v: 0);
sorry...

) public static final Point OPPONENT_SUMMARY_POSITION = new Point(x: 180, y: 8);

CS@AU Henrik Baerbak Christensen

public static final Point OPPONENT_HERO_POWER_DESCRIPTION_POSITION = new Point(x

180,

y: 20);

58

/v

AARHUS UNIVERSITET

Happy Coding...

